Chapter 1

The Real Numbers

1.1 Discussion: The Irrationality of V2

Toward the end of his distinguished career, the renowned British mathematician
G.H. Hardy eloquently laid out a justification for a life of studying mathematics
in A Mathematician’s Apology, an essay first published in 1940. At the center
of Hardy’s defense is the thesis that mathematics is an aesthetic discipline. For
Hardy, the applied mathematics of engineers and economists held little charm.
“Real mathematics,” as he referred to it, “must be justified as art if it can be
justified at all.”

To help make his point, Hardy includes two theorems from classical Greek
mathematics, which, in his opinion, possess an elusive kind of beauty that,
although difficult to define, is easy to recognize. The first of these results is
Fuclid’s proof that there are an infinite number of prime numbers. The second
result is the discovery, attributed to the school of Pythagoras from around 500
B.C., that V/2 is irrational. It is this second theorem that demands our attention.
(A course in number theory would focus on the first.) The argument uses only
arithmetic, but its depth and importance cannot be overstated. As Hardy says,
“[It] is a ‘simple’ theorem, simple both in idea and execution, but there is no
doubt at all about [it being] of the highest class. [It] is as fresh and significant as
when it was discovered—two thousand years have not written a wrinkle on [it].”

Theorem 1.1.1. There is no rational number whose square is 2.

Proof. A rational number is any number that can be expressed in the form p/q,
where p and ¢ are integers. Thus, what the theorem asserts is that no matter
how p and ¢ are chosen, it is never the case that (p/q)2 = 2. The line of attack
is indirect, using a type of argument referred to as a proof by contradiction.
The idea is to assume that there is a rational number whose square is 2 and
then proceed along logical lines until we reach a conclusion that is unacceptable.
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2 Chapter 1. The Real Numbers

At this point, we will be forced to retrace our steps and reject the erroneous
assumption that some rational number squared is equal to 2. In short, we will
prove that the theorem is true by demonstrating that it cannot be false.

And so assume, for contradiction, that there exist integers p and ¢ satisfying

(i) -

We may also assume that p and ¢ have no common factor, because, if they had
one, we could simply cancel it out and rewrite the fraction in lowest terms. Now,
equation (1) implies

(2) p? = 2¢°.

From this, we can see that the integer p? is an even number (it is divisible by 2),
and hence p must be even as well because the square of an odd number is odd.
This allows us to write p = 2r, where r is also an integer. If we substitute 2r
for p in equation (2), then a little algebra yields the relationship

202 = q2.

But now the absurdity is at hand. This last equation implies that ¢? is even,
and hence ¢ must also be even. Thus, we have shown that p and ¢ are both
even (i.e., divisible by 2) when they were originally assumed to have no common
factor. From this logical impasse, we can only conclude that equation (1) cannot
hold for any integers p and ¢, and thus the theorem is proved. O

A component of Hardy’s definition of beauty in a mathematical theorem
is that the result have lasting and serious implications for a network of other
mathematical ideas. In this case, the ideas under assault were the Greeks’ under-
standing of the relationship between geometric length and arithmetic number.
Prior to the preceding discovery, it was an assumed and commonly used fact
that, given two line segments AB and C'D, it would always be possible to find
a third line segment whose length divides evenly into the first two. In modern
terminology, this is equivalent to asserting that the length of CD is a rational
multiple of the length of AB. Looking at the diagonal of a unit square (Fig. 1.1),
it now followed (using the Pythagorean Theorem) that this was not always the
case. Because the Pythagoreans implicitly interpreted number to mean rational
number, they were forced to accept that number was a strictly weaker notion
than length.

Rather than abandoning arithmetic in favor of geometry (as the Greeks seem
to have done), our resolution to this limitation is to strengthen the concept of
number by moving from the rational numbers to a larger number system. From
a modern point of view, this should seem like a familiar and somewhat natural
phenomenon. We begin with the natural numbers

N ={1,2,3,4,5,...}.
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Figure 1.1: v/2 EXISTS AS A GEOMETRIC LENGTH.

The influential German mathematician Leopold Kronecker (1823-1891) once
asserted that “The natural numbers are the work of God. All of the rest is
the work of mankind.” Debating the validity of this claim is an interesting
conversation for another time. For the moment, it at least provides us with
a place to start. If we restrict our attention to the natural numbers N, then
we can perform addition perfectly well, but we must extend our system to the
integers

Z={.,-3-2-101,23,. ..}

if we want to have an additive identity (zero) and the additive inverses necessary
to define subtraction. The next issue is multiplication and division. The number
1 acts as the multiplicative identity, but in order to define division we need to
have multiplicative inverses. Thus, we extend our system again to the rational
numbers

Q= {all fractions g where p and ¢ are integers with ¢ # 0} .

Taken together, the properties of Q discussed in the previous paragraph
essentially make up the definition of what is called a field. More formally stated,
a field is any set where addition and multiplication are well-defined operations
that are commutative, associative, and obey the familiar distributive property
a(b+ c¢) = ab+ ac. There must be an additive identity, and every element must
have an additive inverse. Finally, there must be a multiplicative identity, and
multiplicative inverses must exist for all nonzero elements of the field. Neither
Z nor N is a field. The finite set {0,1,2,3,4} is a field when addition and
multiplication are computed modulo 5. This is not immediately obvious but
makes an interesting exercise.

The set Q also has a natural order defined on it. Given any two rational
numbers r and s, exactly one of the following is true:

r <s, r=s, or r>S.
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Figure 1.2: APPROXIMATING v/2 WITH RATIONAL NUMBERS.

This ordering is transitive in the sense that if r < s and s < ¢, then r < ¢, so
we are conveniently led to a mental picture of the rational numbers as being
laid out from left to right along a number line. Unlike Z, there are no intervals
of empty space. Given any two rational numbers r < s, the rational number
(r+s)/2 sits halfway in between, implying that the rational numbers are densely
nestled together.

With the field properties of Q allowing us to safely carry out the algebraic
operations of addition, subtraction, multiplication, and division, let’s remind
ourselves just what it is that Q is lacking. By Theorem 1.1.1, it is apparent
that we cannot always take square roots. The problem, however, is actually
more fundamental than this. Using only rational numbers, it is possible to
approzimate /2 quite well (Fig.1.2). For instance, 1.414%> = 1.999396. By
adding more decimal places to our approximation, we can get even closer to
a value for v/2, but, even so, we are now well aware that there is a “hole” in
the rational number line where /2 ought to be. Of course, there are quite a
few other holes—at /3 and \/5, for example. Returning to the dilemma of the
ancient Greek mathematicians, if we want every length along the number line to
correspond to an actual number, then another extension to our number system
is in order. Thus, to the chain N C Z C Q we append the real numbers R.

The question of how to actually construct R from Q is rather complicated
business. It is discussed in Section 1.3, and then again in more detail in Sec-
tion 8.6. For the moment, it is not too inaccurate to say that R is obtained by
filling in the gaps in Q. Wherever there is a hole, a new irrational number is
defined and placed into the ordering that already exists on Q. The real numbers
are then the union of these irrational numbers together with the more familiar
rational ones. What properties does the set of irrational numbers have? How
do the sets of rational and irrational numbers fit together? Is there a kind of
symmetry between the rationals and the irrationals, or is there some sense in
which we can argue that one type of real number is more common than the
other? The one method we have seen so far for generating examples of irra-
tional numbers is through square roots. Not too surprisingly, other roots such
as v/2 or +/3 are most often irrational. Can all irrational numbers be expressed
as algebraic combinations of nth roots and rational numbers, or are there still
other irrational numbers beyond those of this form?
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1.2 Some Preliminaries

The vocabulary necessary for the ensuing development comes from set theory
and the theory of functions. This should be familiar territory, but a brief review
of the terminology is probably a good idea, if only to establish some agreed-upon
notation.

Sets

Intuitively speaking, a set is any collection of objects. These objects are referred
to as the elements of the set. For our purposes, the sets in question will most
often be sets of real numbers, although we will also encounter sets of functions
and, on a few occasions, sets whose elements are other sets.

Given a set A, we write € A if x (whatever it may be) is an element of A.
If = is not an element of A, then we write x ¢ A. Given two sets A and B, the
union is written AU B and is defined by asserting that

x € AU B provided that z € A or x € B (or potentially both).
The intersection AN B is the set defined by the rule
x € ANB provided z € A and = € B.

Example 1.2.1. (i) There are many acceptable ways to assert the contents
of a set. In the previous section, the set of natural numbers was defined
by listing the elements: N = {1,2,3,...}.

(ii) Sets can also be described in words. For instance, we can define the set E
to be the collection of even natural numbers.

(iii) Sometimes it is more efficient to provide a kind of rule or algorithm for
determining the elements of a set. As an example, let

S={reqQ:r?* <2}

Read aloud, the definition of S says, “Let S be the set of all rational
numbers whose squares are less than 2.” It follows that 1 € S, 4/3 € S,
but 3/2 ¢ S because 9/4 > 2.

Using the previously defined sets to illustrate the operations of intersection
and union, we observe that

NUE=N, NNE=E, NnS={1}, and ENS=0.

The set @ is called the empty set and is understood to be the set that con-
tains no elements. An equivalent statement would be to say that F and S are
disjoint.
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A word about the equality of two sets is in order (since we have just used the
notion). The inclusion relationship A C B or B D A is used to indicate that
every element of A is also an element of B. In this case, we say A is a subset of
B, or B contains A. To assert that A = B means that A C B and B C A. Put
another way, A and B have exactly the same elements.

Quite frequently in the upcoming chapters, we will want to apply the union
and intersection operations to infinite collections of sets.

Example 1.2.2. Let

A = N={1,2,3,..},
Ay = {2,3,4,...},
As = {3,4,5,...},

and, in general, for each n € N, define the set
Ay, ={n,n+1,n+2...}
The result is a nested chain of sets
A1 DA DA3D A2 -+,
where each successive set is a subset of all the previous ones. Notationally,
o0
UA4n, U A4n o Aiududsu--
n=1 neN

are all equivalent ways to indicate the set whose elements consist of any element
that appears in at least one particular A,,. Because of the nested property of
this particular collection of sets, it is not too hard to see that

fj A, = A
n=1

The notion of intersection has the same kind of natural extension to infinite
collections of sets. For this example, we have

() An = 0.
n=1

Let’s be sure we understand why this is the case. Suppose we had some natural
number m that we thought might actually satisfy m € (-, A,. What this
would mean is that m € A, for every A, in our collection of sets. Because m
is not an element of A,,;1, no such m exists and the intersection is empty.

As mentioned, most of the sets we encounter will be sets of real numbers.
Given A C R, the complement of A, written A€, refers to the set of all elements
of R not in A. Thus, for A CR,

A={zeR:z ¢ A}
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A few times in our work to come, we will refer to De Morgan’s Laws, which
state that
(ANB)*=A°UB°® and (AUB)°=A°nNB°.

Proofs of these statements are discussed in Exercise 1.2.5.

Admittedly, there is something imprecise about the definition of set pre-
sented at the beginning of this discussion. The defining sentence begins with
the phrase “Intuitively speaking,” which might seem an odd way to embark on a
course of study that purportedly intends to supply a rigorous foundation for the
theory of functions of a real variable. In some sense, however, this is unavoid-
able. Each repair of one level of the foundation reveals something below it in
need of attention. The theory of sets has been subjected to intense scrutiny over
the past century precisely because so much of modern mathematics rests on this
foundation. But such a study is really only advisable once it is understood why
our naive impression about the behavior of sets is insufficient. For the direction
in which we are heading, this will not happen, although an indication of some
potential pitfalls is given in Section 1.7.

Functions

Definition 1.2.3. Given two sets A and B, a function from A to B is a rule or
mapping that takes each element x € A and associates with it a single element
of B. In this case, we write f : A — B. Given an element x € A, the expression
f(x) is used to represent the element of B associated with = by f. The set A is
called the domain of f. The range of f is not necessarily equal to B but refers
to the subset of B given by {y € B : y = f(z) for some z € A}.

This definition of function is more or less the one proposed by Peter Lejeune
Dirichlet (1805-1859) in the 1830s. Dirichlet was a German mathematician who
was one of the leaders in the development of the rigorous approach to functions
that we are about to undertake. His main motivation was to unravel the issues
surrounding the convergence of Fourier series. Dirichlet’s contributions figure
prominently in Section 8.5, where an introduction to Fourier series is presented,
but we will also encounter his name in several earlier chapters along the way.
What is important at the moment is that we see how Dirichlet’s definition
of function liberates the term from its interpretation as a type of “formula.”
In the years leading up to Dirichlet’s time, the term “function” was generally
understood to refer to algebraic entities such as f(x) = #2+1 or g(z) = Vot + 4.
Definition 1.2.3 allows for a much broader range of possibilities.

Example 1.2.4. In 1829, Dirichlet proposed the unruly function

1 ifzeqQ
g(x)_{ 0 ifz¢Q.

The domain of g is all of R, and the range is the set {0,1}. There is no single
formula for g in the usual sense, and it is quite difficult to graph this function
(see Section 4.1 for a rough attempt), but it certainly qualifies as a function



8 Chapter 1. The Real Numbers

according to the criterion in Definition 1.2.3. As we study the theoretical nature
of continuous, differentiable, or integrable functions, examples such as this one
will provide us with an invaluable testing ground for the many conjectures we
encounter.

Example 1.2.5 (Triangle Inequality). The absolute value function is so
important that it merits the special notation |x| in place of the usual f(z) or
g(x). Tt is defined for every real number via the piecewise definition

| = T ifxz>0
=Y =z ifz<o.

With respect to multiplication and division, the absolute value function satisfies
(i) |abl = |al|b] and
(ii) [a+0] < |a| + 0]

for all choices of a and b. Verifying these properties (Exercise 1.2.6) is just a
matter of examining the different cases that arise when a, b, and a+b are positive
and negative. Property (ii) is called the triangle inequality. This innocuous
looking inequality turns out to be fantastically important and will be frequently
employed in the following way. Given three real numbers a, b, and ¢, we certainly
have

la—b] =[(a—c)+ (c—b)|.

By the triangle inequality,

[(@a—c)+(c=b) <l|a—cf+]c—b],
so we get
(1) la —b| <la—c|+|c—Db|.

Now, the expression |a — b| is equal to |b — a| and is best understood as the dis-
tance between the points a and b on the number line. With this interpretation,
equation (1) makes the plausible statement that the distance from a to b is less
than or equal to the distance from a to ¢ plus the distance from ¢ to b. Pre-
tending for a moment that these are points in the plane (instead of on the real
line), it should be evident why this is referred to as the “triangle inequality.”

Logic and Proofs

Writing rigorous mathematical proofs is a skill best learned by doing, and there
is plenty of on-the-job training just ahead. As Hardy indicates, there is an artis-
tic quality to mathematics of this type, which may or may not come easily, but
that is not to say that anything especially mysterious is happening. A proof is
an essay of sorts. It is a set of carefully crafted directions, which, when followed,
should leave the reader absolutely convinced of the truth of the proposition in



1.2. Some Preliminaries 9

question. To achieve this, the steps in a proof must follow logically from pre-
vious steps or be justified by some other agreed-upon set of facts. In addition
to being valid, these steps must also fit coherently together to form a cogent
argument. Mathematics has a specialized vocabulary, to be sure, but that does
not exempt a good proof from being written in grammatically correct English.

The one proof we have seen at this point (to Theorem 1.1.1) uses an indirect
strategy called proof by contradiction. This powerful technique will be employed
a number of times in our upcoming work. Nevertheless, most proofs are direct.
(It also bears mentioning that using an indirect proof when a direct proof is
available is generally considered bad form.) A direct proof begins from some
valid statement, most often taken from the theorem’s hypothesis, and then pro-
ceeds through rigorously logical deductions to a demonstration of the theorem’s
conclusion. As we saw in Theorem 1.1.1, an indirect proof always begins by
negating what it is we would like to prove. This is not always as easy to do as it
may sound. The argument then proceeds until (hopefully) a logical contradic-
tion with some other accepted fact is uncovered. Many times, this accepted fact
is part of the hypothesis of the theorem. When the contradiction is with the
theorem’s hypothesis, we technically have what is called a contrapositive proof.

The next proposition illustrates a number of the issues just discussed and
introduces a few more.

Theorem 1.2.6. Two real numbers a and b are equal if and only if for every
real number € > 0 it follows that |a — b| < e.

Proof. There are two key phrases in the statement of this proposition that
warrant special attention. Omne is “for every,” which will be addressed in a
moment. The other is “if and only if.” To say “if and only if” in mathematics
is an economical way of stating that the proposition is true in two directions.
In the forward direction, we must prove the statement:

(=) If a =0, then for every real number € > 0 it follows that |a — b| < e.
We must also prove the converse statement:

(<) If for every real number € > 0 it follows that |a — b| < €, then we must
have a = b.

For the proof of the first statement, there is really not much to say. If a = b,
then |a — b = 0, and so certainly |a — b| < € no matter what ¢ > 0 is chosen.

For the second statement, we give a proof by contradiction. The conclusion
of the proposition in this direction states that a = b, so we assume that a # b.
Heading off in search of a contradiction brings us to a consideration of the phrase
“for every € > 0.” Some equivalent ways to state the hypothesis would be to
say that “for all possible choices of € > 0” or “no matter how € > 0 is selected,
it is always the case that |a — b| < €.” But assuming a # b (as we are doing at
the moment), the choice of

eo=la—b>0
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poses a serious problem. We are assuming that |a — b| < € is true for every
€ > 0, so this must certainly be true of the particular ¢y just defined. However,
the statements

la—bl <e and |a—bl=¢

cannot both be true. This contradiction means that our initial assumption that
a # b is unacceptable. Therefore, a = b, and the indirect proof is complete. [

One of the most fundamental skills required for reading and writing analysis
proofs is the ability to confidently manipulate the quantifying phrases “for all”
and “there exists.” Significantly more attention will be given to this issue in
many upcoming discussions.

Induction

One final trick of the trade, which will arise with some frequency, is the use of
induction arguments. Induction is used in conjunction with the natural numbers
N (or sometimes with the set N U {0}). The fundamental principle behind
induction is that if .S is some subset of N with the property that

(i) S contains 1 and
(ii) whenever S contains a natural number n, it also contains n + 1,

then it must be that S = IN. As the next example illustrates, this principle can
be used to define sequences of objects as well as to prove facts about them.

Example 1.2.7. Let 1 = 1, and for each n € N define
Tnt1 = (1/2)z, + 1.

Using this rule, we can compute zo = (1/2)(1) +1 = 3/2, 3 = 7/4, and it is
immediately apparent how this leads to a definition of z,, for all n € N.

The sequence just defined appears at the outset to be increasing. For the
terms computed, we have z1 < x5 < x3. Let’s use induction to prove that this
trend continues; that is, let’s show

(2) T S Tn+1

for all values of n € N.
For n =1, 1 = 1 and 25 = 3/2, so that x1 < x5 is clear. Now, we want to
show that

if we have x,, < x,,41, then it follows that z,11 < x,42.

Think of S as the set of natural numbers for which the claim in equation (2)
is true. We have shown that 1 € S. We are now interested in showing that if
n € S, then n+1 € S as well. Starting from the induction hypothesis z,, < x,,41,
we can multiply across the inequality by 1/2 and add 1 to get

1 1
5%n +1< 5Tnt1 +1,
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which is precisely the desired conclusion z,41 < 2,42. By induction, the claim
is proved for all n € N.

Any discussion about why induction is a valid argumentative technique im-
mediately opens up a box of questions about how we understand the natural
numbers. Earlier, in Section 1.1, we avoided this issue by referencing Kro-
necker’s famous comment that the natural numbers are somehow divinely given.
Although we will not improve on this explanation here, it should be pointed out
that a more atheistic and mathematically satisfying approach to N is possible
from the point of view of axiomatic set theory. This brings us back to a recurring
theme of this chapter. Pedagogically speaking, the foundations of mathematics
are best learned and appreciated in a kind of reverse order. A rigorous study of
the natural numbers and the theory of sets is certainly recommended, but only
after we have an understanding of the subtleties of the real number system. It
is this latter topic that is the business of real analysis.

Exercises

Exercise 1.2.1. (a) Prove that /3 is irrational. Does a similar argument
work to show /6 is irrational?

(b) Where does the proof of Theorem 1.1.1 break down if we try to use it to
prove V/4 is irrational?

Exercise 1.2.2. Show that there is no rational number r satisfying 2" = 3.

Exercise 1.2.3. Decide which of the following represent true statements about
the nature of sets. For any that are false, provide a specific example where the
statement in question does not hold.

(a) If Ay D Ay D A3z D Ay--- are all sets containing an infinite number of
elements, then the intersection ﬂff:l A,, is infinite as well.

(b) If A4 D Ay D A3 D Ay --- are all finite, nonempty sets of real numbers,
then the intersection (), A, is finite and nonempty.

(c) AN(BUC)=(ANnB)UC.
(d) An(BNnC)=(AnB)NC.
() AN(BUC)=(ANB)U(ANC).

Exercise 1.2.4. Produce an infinite collection of sets Ai, As, Az, ... with the
property that every A; has an infinite number of elements, 4; N A; = 0 for all

Exercise 1.2.5 (De Morgan’s Laws). Let A and B be subsets of R.

(a) If z € (AN B)°, explain why = € A°U B°. This shows that (AN B)¢ C
A°U B°.
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(b) Prove the reverse inclusion (A N B)¢ 2 A¢ U B¢ and conclude that
(AN B)¢ = AU B-.
(¢) Show (AU B)¢ = A°N B¢ by demonstrating inclusion both ways.

Exercise 1.2.6. (a) Verify the triangle inequality in the special case where
a and b have the same sign.

(b) Find an efficient proof for all the cases at once by first demonstrating
(a+0)* < (|l + [b])*.

(¢) Prove |a —b| < |a—c¢|+ |c—d|+ |d—b] for all a,b, ¢, and d.

(d) Prove ||a] — |b]] < |a — b|. (The unremarkable identity a = a — b+ b may
be useful.)

Exercise 1.2.7. Given a function f and a subset A of its domain, let f(A)
represent the range of f over the set A; that is, f(A) = {f(x): 2z € A}.

(a) Let f(z) = 2% If A = [0,2] (the closed interval {x € R: 0 < z < 2})
and B = [1,4], find f(A) and f(B). Does f(ANB) = f(A)N f(B) in this
case? Does f(AUB) = f(A)U f(B)?

(b) Find two sets A and B for which f(A N B) # f(A)N f(B).

(¢) Show that, for an arbitrary function g : R — R, it is always true that
g(ANB) C g(A)Ng(B) for all sets A, B C R.

(d) Form and prove a conjecture about the relationship between g(AU B) and
g(A) U g(B) for an arbitrary function g.

Exercise 1.2.8. Here are two important definitions related to a function f :
A — B. The function f is one-to-one (1-1) if a1 # as in A implies that f(a1) #
f(az) in B. The function f is onto if, given any b € B, it is possible to find an
element a € A for which f(a) =b.

Give an example of each or state that the request is impossible:

(a) f:N — N that is 1-1 but not onto.
(b) f: N — N that is onto but not 1-1.
(¢) f:N — Z that is 1-1 and onto.

Exercise 1.2.9. Given a function f: D — R and a subset B C R, let f~1(B)
be the set of all points from the domain D that get mapped into B; that is,
f7Y(B)={z € D: f(x) € B}. This set is called the preimage of B.

(a) Let f(z) = 2. If A is the closed interval [0, 4] and B is the closed interval
[—1,1], find f~1(A) and f~1(B). Does f~H(ANB) = f~1(A) N f~YB)
in this case? Does f1(AUB) = f~1(A)U f~4(B)?
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(b) The good behavior of preimages demonstrated in (a) is completely general.
Show that for an arbitrary function g : R — R, it is always true that
g " (ANB) =g " (A)Nng '(B) and g (AUB) = g~'(A) Ug~"(B) for
all sets A, B C R.

Exercise 1.2.10. Decide which of the following are true statements. Provide a
short justification for those that are valid and a counterexample for those that
are not:

(a) Two real numbers satisfy a < b if and only if a < b+ € for every € > 0.
(b) Two real numbers satisfy a < b if a < b+ € for every € > 0.
(¢) Two real numbers satisfy a < b if and only if a < b+ € for every € > 0.

Exercise 1.2.11. Form the logical negation of each claim. One trivial way to
do this is to simply add “It is not the case that...” in front of each assertion.
To make this interesting, fashion the negation into a positive statement that
avoids using the word “not” altogether. In each case, make an intuitive guess
as to whether the claim or its negation is the true statement.

(a) For all real numbers satisfying a < b, there exists an n € N such that
a+1/n<b.

(b) There exists a real number z > 0 such that x < 1/n for all n € N.

(c) Between every two distinct real numbers there is a rational number.
Exercise 1.2.12. Let y; = 6, and for each n € N define y,,+1 = (2y, — 6)/3.

(a) Use induction to prove that the sequence satisfies y,, > —6 for all n € N.

(b) Use another induction argument to show the sequence (y1,y2,ys,...) is
decreasing.

Exercise 1.2.13. For this exercise, assume Exercise 1.2.5 has been successfully
completed.

(a) Show how induction can be used to conclude that
(AjUAU---UA,) = ATNASN---NAS
for any finite n € N.

(b) It is tempting to appeal to induction to conclude

=1 i=1

but induction does not apply here. Induction is used to prove that a
particular statement holds for every value of n € N, but this does not
imply the validity of the infinite case. To illustrate this point, find an
example of a collection of sets By, Bs, B3, ... where ﬂ?:l B; # 0 is true
for every n € N, but (2, B; # 0 fails.
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(¢) Nevertheless, the infinite version of De Morgan’s Law stated in (b) is a
valid statement. Provide a proof that does not use induction.

1.3 The Axiom of Completeness

What exactly is a real number? In Section 1.1, we got as far as saying that
the set R of real numbers is an extension of the rational numbers Q in which
there are no holes or gaps. We want every length along the number line—such
as vV2—to correspond to a real number and vice versa.

We are going to improve on this definition, but as we do so, it is important
to keep in mind our earlier acknowledgment that whatever precise statements
we formulate will necessarily rest on other unproven assumptions or undefined
terms. At some point, we must draw a line and confess that this is what we have
decided to accept as a reasonable place to start. Naturally, there is some debate
about where this line should be drawn. One way to view the mathematics of
the 19th and 20th centuries is as a stalwart attempt to move this line further
and further back toward some unshakable foundation. The majority of the
material covered in this book is attributable to the mathematicians working in
the early and middle parts of the 1800s. Augustin Louis Cauchy (1789-1857),
Bernhard Bolzano (1781-1848), Niels Henrik Abel (1802-1829), Peter Lejeune
Dirichlet, Karl Weierstrass (1815-1897), and Bernhard Riemann (1826-1866) all
figure prominently in the discovery of the theorems that follow. But here is the
interesting point. Nearly all of this work was done using intuitive assumptions
about the nature of R quite similar to our own informal understanding at this
point. Eventually, enough scrutiny was directed at the detailed structure of R
so that, in the 1870s, a handful of ways to rigorously construct R from Q were
proposed.

Following this historical model, our own rigorous construction of R from Q
is postponed until Section 8.6. By this point, the need for such a construction
will be more justified and easier to appreciate. In the meantime, we have many
proofs to write, so it is important to lay down, as explicitly as possible, the
assumptions that we intend to make about the real numbers.

An Initial Definition for R

First, R is a set containing Q. The operations of addition and multiplication
on Q extend to all of R in such a way that every element of R has an additive
inverse and every nonzero element of R has a multiplicative inverse. Echoing
the discussion in Section 1.1, we assume R is a field, meaning that addition
and multiplication of real numbers are commutative, associative, and the dis-
tributive property holds. This allows us to perform all of the standard algebraic
manipulations that are second nature to us. We also assume that the familiar
properties of the ordering on Q extend to all of R. Thus, for example, such
deductions as “If a < b and ¢ > 0, then ac < bc” will be carried out freely
without much comment. To summarize the situation in the official terminology
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inf A sup A
1 |

lower bounds \ jl / upper bounds

Figure 1.3: DEFINITION OF sup A AND inf A.

of the subject, we assume that R is an ordered field, which contains Q as a
subfield. (A rigorous definition of “ordered field” is presented in Section 8.6.)

This brings us to the final, and most distinctive, assumption about the real
number system. We must find some way to clearly articulate what we mean by
insisting that R does not contain the gaps that permeate Q. Because this is the
defining difference between the rational numbers and the real numbers, we will
be excessively precise about how we phrase this assumption, hereafter referred
to as the Aziom of Completeness.

Axiom of Completeness. Fvery nonempty set of real numbers that is bounded
above has a least upper bound.

Now, what exactly does this mean?

Least Upper Bounds and Greatest Lower Bounds
Let’s first state the relevant definitions, and then look at some examples.

Definition 1.3.1. A set A C R is bounded above if there exists a number b € R
such that a < b for all @ € A. The number b is called an upper bound for A.

Similarly, the set A is bounded below if there exists a lower bound | € R
satisfying | < a for every a € A.

Definition 1.3.2. A real number s is the least upper bound for a set A C R if
it meets the following two criteria:

(i) s is an upper bound for A;
(ii) if b is any upper bound for A, then s < b.

The least upper bound is also frequently called the supremum of the set A.
Although the notation s = lub A is sometimes used, we will always write s =
sup A for the least upper bound.

The greatest lower bound or infimum for A is defined in a similar way
(Exercise 1.3.1) and is denoted by inf A (Fig. 1.3).

Although a set can have a host of upper bounds, it can have only one least
upper bound. If s; and ss are both least upper bounds for a set A, then
by property (ii) in Definition 1.3.2 we can assert s1 < sy and s < s1. The
conclusion is that s; = so and least upper bounds are unique.
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Example 1.3.3. Let

A—{lzneN}—{l,l,l,...}.
n 2°3

The set A is bounded above and below. Successful candidates for an upper
bound include 3, 2, and 3/2. For the least upper bound, we claim sup A = 1.
To argue this rigorously using Definition 1.3.2, we need to verify that properties
(i) and (ii) hold. For (i), we just observe that 1 > 1/n for all choices of n € N.
To verify (ii), we begin by assuming we are in possession of some other upper
bound b. Because 1 € A and b is an upper bound for A, we must have 1 < b.
This is precisely what property (ii) asks us to show.

Although we do not quite have the tools we need for a rigorous proof (see
Theorem 1.4.2), it should be somewhat apparent that inf A = 0.

An important lesson to take from Example 1.3.3 is that sup A and inf A may
or may not be elements of the set A. This issue is tied to understanding the
crucial difference between the maximum and the supremum (or the minimum
and the infimum) of a given set.

Definition 1.3.4. A real number ag is a mazimum of the set A if a¢ is an
element of A and ag > a for all @ € A. Similarly, a number a; is a minimum of
Aif a; € A and a; < a for every a € A.

Example 1.3.5. To belabor the point, consider the open interval
(0,2) ={zxeR:0<x <2},

and the closed interval
0,2 ={zeR:0<z <2}

Both sets are bounded above (and below), and both have the same least upper
bound, namely 2. It is not the case, however, that both sets have a maximum.
A maximum is a specific type of upper bound that is required to be an element
of the set in question, and the open interval (0,2) does not possess such an
element. Thus, the supremum can exist and not be a maximum, but when a
maximum exists, then it is also the supremum.

Let’s turn our attention back to the Axiom of Completeness. Although we
can see now that not every nonempty bounded set contains a maximum, the
Axiom of Completeness asserts that every such set does have a least upper
bound. We are not going to prove this. An aziom in mathematics is an ac-
cepted assumption, to be used without proof. Preferably, an axiom should be
an elementary statement about the system in question that is so fundamental
that it seems to need no justification. Perhaps the Axiom of Completeness fits
this description, and perhaps it does not. Before deciding, let’s remind ourselves
why it is not a valid statement about Q.
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Example 1.3.6. Consider again the set
S={reqQ:r* <2},

and pretend for the moment that our world consists only of rational numbers.
The set S is certainly bounded above. Taking b = 2 works, as does b = 3/2. But
notice what happens as we go in search of the least upper bound. (It may be
useful here to know that the decimal expansion for V2 begins 1.4142....) We
might try b = 142/100, which is indeed an upper bound, but then we discover
that b = 1415/1000 is an upper bound that is smaller still. Is there a smallest
one?

In the rational numbers, there is not. In the real numbers, there is. Back
in R, the Axiom of Completeness states that we may set « = sup S and be
confident that such a number exists. In the next section, we will prove that
a? = 2. But according to Theorem 1.1.1, this implies « is not a rational
number. If we are restricting our attention to only rational numbers, then «
is not an allowable option for sup S, and the search for a least upper bound
goes on indefinitely. Whatever rational upper bound is discovered, it is always
possible to find one smaller.

The tools needed to carry out the computations described in Example 1.3.6
depend on results about how Q and N fit inside of R. These are discussed in the
next section. In the meantime, it is possible to prove some intuitive algebraic
properties of least upper bounds just using the definition.

Example 1.3.7. Let A C R be nonempty and bounded above, and let ¢ € R.
Define the set ¢+ A by

c+A={c+a:a€ A}

Then sup(c+ A) = ¢+ sup A.

To properly verify this we focus separately on each part of Definition 1.3.2.
Setting s = sup A, we see that a < s for all a € A, which implies c+a < ¢+ s for
all a € A. Thus, ¢+ s is an upper bound for ¢ + A and condition (i) is verified.

For (ii), let b be an arbitrary upper bound for ¢ + A; i.e., ¢+ a < b for all
a € A. This is equivalent to a < b—c for all a € A, from which we conclude that
b—cis an upper bound for A. Because s is the least upper bound of A, s < b—c,
which can be rewritten as ¢ + s < b. This verifies part (ii) of Definition 1.3.2,
and we conclude sup(c+ A) = ¢+ sup A.

There is an equivalent and useful way of characterizing least upper bounds.
As the previous example illustrates, Definition 1.3.2 of the supremum has two
parts. Part (i) says that sup A must be an upper bound, and part (ii) states
that it must be the smallest one. The following lemma offers an alternative way
to restate part (ii).

Lemma 1.3.8. Assume s € R is an upper bound for a set A C R. Then,
s = sup A if and only if, for every choice of € > 0, there exists an element a € A
satisfying s — € < a.
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Proof. Here is a short rephrasing of the lemma: Given that s is an upper bound,
s is the least upper bound if and only if any number smaller than s is not an
upper bound. Putting it this way almost qualifies as a proof, but we will expand
on what exactly is being said in each direction.

(=) For the forward direction, we assume s = sup A and consider s—e, where
€ > 0 has been arbitrarily chosen. Because s — ¢ < s, part (ii) of Definition 1.3.2
implies that s — € is not an upper bound for A. If this is the case, then there
must be some element a € A for which s — e < a (because otherwise s — e would
be an upper bound). This proves the lemma in one direction.

(<) Conversely, assume s is an upper bound with the property that no
matter how € > 0 is chosen, s — € is no longer an upper bound for A. Notice
that what this implies is that if b is any number less than s, then b is not an
upper bound. (Just let € = s—b.) To prove that s = sup A, we must verify part
(ii) of Definition 1.3.2. (Read it again.) Because we have just argued that any
number smaller than s cannot be an upper bound, it follows that if b is some
other upper bound for A, then s < b. O

It is certainly the case that all of our conclusions to this point about least
upper bounds have analogous versions for greatest lower bounds. The Axiom of
Completeness does not explicitly assert that a nonempty set bounded below has
an infimum, but this is because we do not need to assume this fact as part of
the axiom. Using the Axiom of Completeness, there are several ways to prove
that greatest lower bounds exist for nonempty bounded sets. One such proof is
explored in Exercise 1.3.3.

Exercises

Exercise 1.3.1. (a) Write a formal definition in the style of Definition 1.3.2
for the infimum or greatest lower bound of a set.

(b) Now, state and prove a version of Lemma 1.3.8 for greatest lower bounds.

Exercise 1.3.2. Give an example of each of the following, or state that the
request is impossible.

(a) A set B with inf B > sup B.
(b) A finite set that contains its infimum but not its supremum.
(¢) A bounded subset of Q that contains its supremum but not its infimum.

Exercise 1.3.3. (a) Let A be nonempty and bounded below, and define B =
{b € R:bis alower bound for A}. Show that sup B = inf A.

(b) Use (a) to explain why there is no need to assert that greatest lower bounds
exist as part of the Axiom of Completeness.

Exercise 1.3.4. Let Ay, As, As, ... be a collection of nonempty sets, each of
which is bounded above.
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(a) Find a formula for sup(A4;UA). Extend this to sup (Uy_, Ax-

(b) Consider sup ([ Jpo Ax). Does the formula in (a) extend to the infinite
case?

Exercise 1.3.5. As in Example 1.3.7, let A C R be nonempty and bounded
above, and let ¢ € R. This time define the set cA = {ca: a € A}.

(a) If ¢ > 0, show that sup(cA) = csup A.
(b) Postulate a similar type of statement for sup(cA) for the case ¢ < 0.

Exercise 1.3.6. Given sets A and B, define A+ B = {a+b:a € A and b € B}.
Follow these steps to prove that if A and B are nonempty and bounded above
then sup(A + B) = sup A + sup B.

(a) Let s =sup A and ¢ = sup B. Show s+ ¢ is an upper bound for A + B.

(b) Now let u be an arbitrary upper bound for A + B, and temporarily fix
a€ A. Showt <u-—a.

(¢) Finally, show sup(A + B) = s +1t.
(d) Construct another proof of this same fact using Lemma 1.3.8.

Exercise 1.3.7. Prove that if a is an upper bound for A, and if a is also an
element of A, then it must be that a = sup A.

Exercise 1.3.8. Compute, without proofs, the suprema and infima (if they
exist) of the following sets:

(a) {m/n:m,n € N with m <n}.
(b) {(=1)™/n:m,n € N}.

(c) {n/(Bn+1):n e N}

(d) {m/(m+n):m.n €N},

Exercise 1.3.9. (a) If supA < sup B, show that there exists an element
b € B that is an upper bound for A.

(b) Give an example to show that this is not always the case if we only assume
sup A < sup B.

Exercise 1.3.10 (Cut Property). The Cut Property of the real numbers is
the following:

If A and B are nonempty, disjoint sets with AU B = R and a < b for all
a € A and b € B, then there exists ¢ € R such that z < ¢ whenever x € A and
x > ¢ whenever x € B.

(a) Use the Axiom of Completeness to prove the Cut Property.
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(b) Show that the implication goes the other way; that is, assume R possesses
the Cut Property and let E be a nonempty set that is bounded above.
Prove sup F exists.

(¢) The punchline of parts (a) and (b) is that the Cut Property could be used
in place of the Axiom of Completeness as the fundamental axiom that
distinguishes the real numbers from the rational numbers. To drive this
point home, give a concrete example showing that the Cut Property is not
a valid statement when R is replaced by Q.

Exercise 1.3.11. Decide if the following statements about suprema and infima
are true or false. Give a short proof for those that are true. For any that are
false, supply an example where the claim in question does not appear to hold.

(a) If A and B are nonempty, bounded, and satisfy A C B, then sup A <
sup B.

(b) If sup A < inf B for sets A and B, then there exists a ¢ € R satisfying
a<c<bforallae Aandbe B.

(c) If there exists a ¢ € R satistying a < ¢ < b for all a € A and b € B, then
sup A < inf B.

1.4 Consequences of Completeness

The first application of the Axiom of Completeness is a result that may look
like a more natural way to mathematically express the sentiment that the real
line contains no gaps.

Theorem 1.4.1 (Nested Interval Property). For each n € N, assume we
are given a closed interval I, = [an,by] = {x € R :a, <z < b,}. Assume
also that each I, contains I,+1. Then, the resulting nested sequence of closed
intervals

Lo, 2132142

has a nonempty intersection; that is, (), I # 0.

Proof. In order to show that (), I,, is not empty, we are going to use the
Axiom of Completeness (AoC) to produce a single real number x satisfying
x € I, for every n € N. Now, AoC is a statement about bounded sets, and the
one we want to consider is the set

A={a,:neN}
of left-hand endpoints of the intervals.

A={an: neN}




